EdTech in Elementary Schools

Brandon Wilmarth - Director of Edcational Techology
Moore Public Schools

2000

Graduated from Westmoore High School.

2000

Graduated from Westmoore High School.

2004

Started my teaching career in secondary education.

2000

Graduated from Westmoore High School.

2004

Started my teaching career in secondary education.

2014

Earned my Master's degree at OU & began Tech Integration role.

2000

Graduated from Westmoore High School.

2004

Started my teaching career in secondary education.

2014

Earned my Master's degree at OU & began Tech Integration role.

2017

Became the Director of EdTech in for MPS.

2000

Graduated from Westmoore High School.

2004

Started my teaching career in secondary education.

2014

Earned my Master's degree at OU & began Tech Integration role.

2017

Became the Director of EdTech in for MPS.

2025

Continuing to support and advocate for effective tech in the classroom.

Why This Matters

Technology in schools is a moving target. Devices and apps change quickly. But what doesn't change is our responsibility:

- to make teaching more effective
- learning more accessible
- and families more connected.

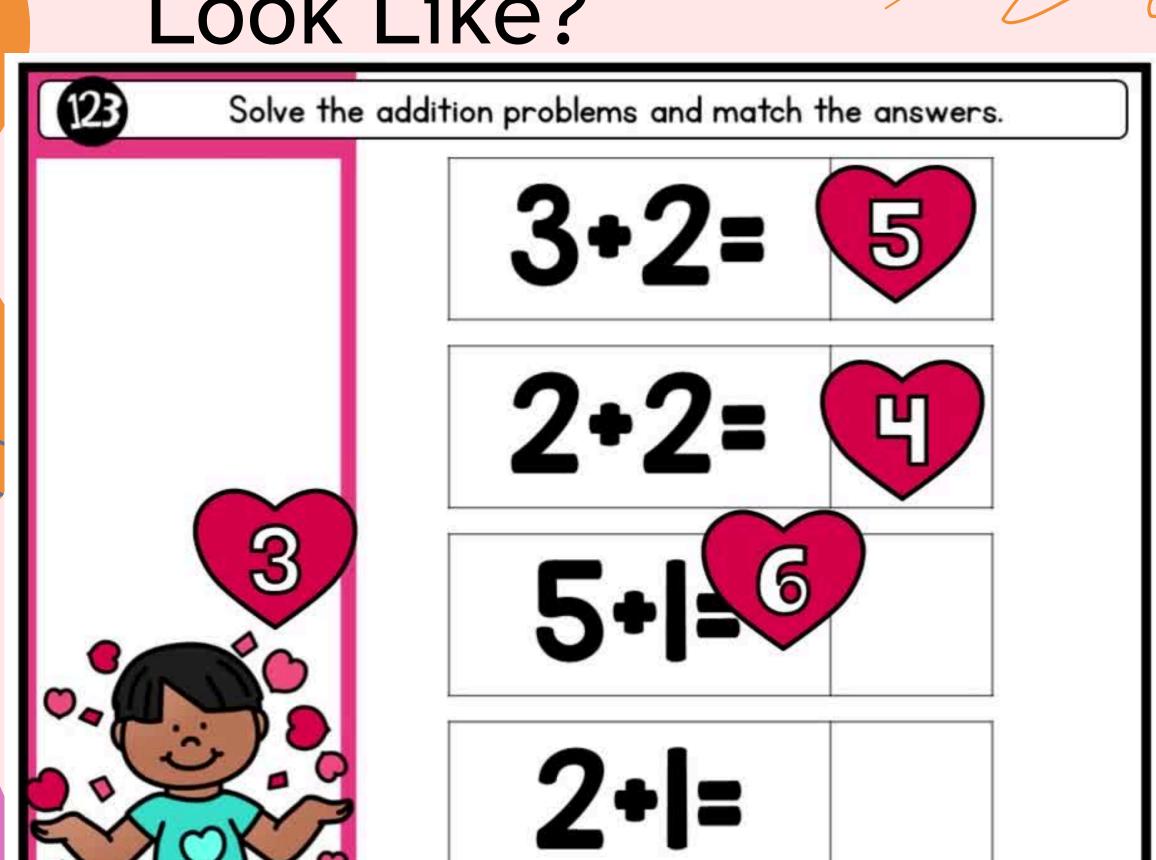
Research from RAND found that personalized learning supported by technology leads to significant gains in math and reading achievement (Pane et al., 2015).

Defining "Screens"

Screen Time Comparison

CoSN. (2025). Screens in Balance: The Blaschke Report. Consortium for School Networking

At-Home Entertainment	Smart Phone/Social Media	EdTech	
Includes TV, video games, streaming apps	Designed for maximum time-on-screen Ad revenue model	Supplement to teaching , not a replacement	
Can be positive for family time (e.g., co-viewing, discussion)	Primarily passive scrolling or consumption	Active participation : reading practice, probleme-solving, collaboration	
Should be limited and balanced with offline play, sleep, and activity	Distracts from learning, little to no instructional value	Success depends on teacher training + alignment with curriculum	



Technology is an Enhancer

Technology itself is neutral—it's the way it's used that matters. In the hands of a skilled teacher, EdTech becomes an enhancer: making lessons more interactive, engaging students in active learning, and supporting those who need extra help. But without purpose or training, the same tools can distract or disengage. Our goal is to ensure every minute of classroom screen time is intentional, guided, and connected to learning.

Source: Masiello et al., 2023; Niederhauser & Howard, 2018; OECD, 2015/2019; Hattie, 2009/2017

What Does This Look Like?

So How Do We Know EdTech is Effective?

SAMR MODEL

REDEFINITION

Technology allows for the creation of new task, previously inconceivable

MODIFICATION

Technology allows for significant task redesign

AUGMENTATION

Technology acts as direct substitue, with functional improvement

SUBSTITUTION

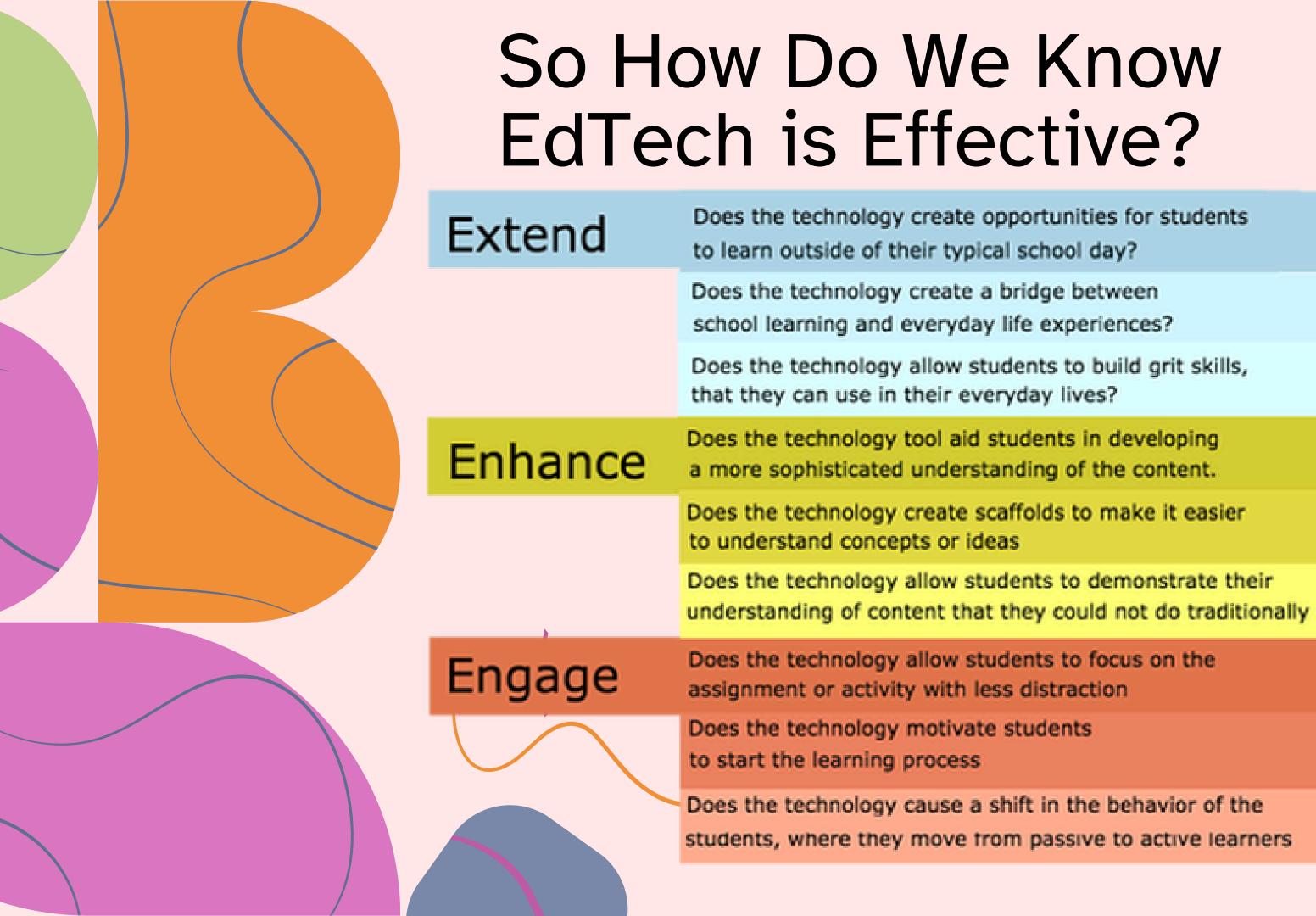
Technology acts as direct substitue, with no functional change

ENHANCEMENT

TRANSFORMATION

So How Do We Know EdTech is Effective?

R EPLACES

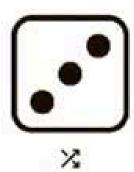

Technology sustains current practice without making meaningful changes to the learning activity.

MPLIFIES

Technology incrementally improves the learning activity in ways that may result in some improvements in learning outcomes.

RANSFORMS

Technology fundamentally changes the learning activity in ways that may result in significant improvements in learning outcomes.



So Does This "Enhance"?

Roll, Record, and Read

•	°	o° l	0 0	000	000
coal	croak	load	toad	roam	glow
row	blow	road	foam	loaf	soak
bow	coach	coast	toast	flow	grow
roast	low	soap	snow	boat	loan
coat	oak	cloak	float	oat	goat
slow	goal	show	tow	mow	bowl

So Does This "Enhance"?

Substitution

Use online databases for research instead of nonfiction books

Augmentation

Take color-coded notes in a word-processing program, ougmented with inserted images

Modification

eate an informational e deck, then narrate a costing video of the

Redefinition

Share videos with local f experts for feedback on questions via video conferending

Technology sustains current practice without making meaningful changes to the learning activity.

activity in ways that may result in some

improvements in learning outcomes.

Technology fundamentally changes the learning activity in ways that may result in significant improvements in learning outcomes

ceimology incrementally improves the learning

RANSFORMS

Extend

Does the technology create opportunities for students to learn outside of their typical school day?

Does the technology create a bridge between school learning and everyday life experiences?

bes the technology allow state to build grit skills, that they can use in their everyday lives:

nhance

Does the technology tool aid students in developing a more sophisticated understanding of the content.

Does the technology create scaffolds to make it easier to understand concepts or ideas

Does the technology allow students to demonstrate the understanding of content that they could not do track

Engage

Does the technology allow students to for ent or activity with les

Does the technology motivate students to start the learning process

Does the technology cause a shift in the behavior of the students, where they move from passive to active learners

Screen Time Guidelines

Early Childhood PK - 2 nd Grade	Upper Elementary 3 rd - 6 th Grade	Secondary 7th - 12 th Grade	
Short, daily bursts (15–20 minutes) of Adaptive Learning Systems that build foundational literacy and numeracy skills.	No more than 20 minutes per session , with daily totals of 45–75 minutes across subjects.	Limit device use to 30 minutes per session, with breaks for discussion, labs, and offline activities.	
Screen time is always teacher-guided , balanced with play , movement, and hands-on learning.	Focus on interactive , project-based , and collaborative tasks — not digital worksheets.	Daily totals of 90–120 minutes are effective when focused on creation, critical thinking, and assessment.	
Less is more : young learners benefit from intentional, interactive use, not extended passive viewing.	Moderate, intentional use strengthens engagement and achievement; overuse diminishes impact.	Structured academic use enhances learning, while excessive or passive use mirrors the harms of recreational screen time.	

American Academy of Pediatrics, 2016 (updated); World Health Organization, 2019; Pane et al., RAND Corporation, 2015; Hattie, 2009; Hattie, 2017; Johnson & Johnson, 2009; Mayer, 2009; OECD, 2015; OECD, 2019; CoSN, Blaschke Report – Screens in Balance, 2025 (Masiello et al., 2023; Niederhauser & Howard, 2018); Twenge & Campbell, 2018; Waterford.org efficacy reports, 2020–2023

The Perfect EdTech Checklist

Short Bursts

Keep sessions ≤20 min

(OECD, 2015; AAP, 2016)

✓ Interactive & Engaging

Active, collaborative learning

(Johnson & Johnson, 2009; Mayer, 2009)

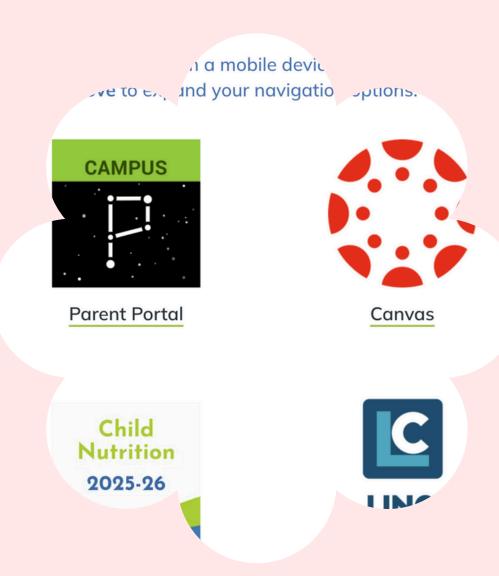
Curriculum-Connected

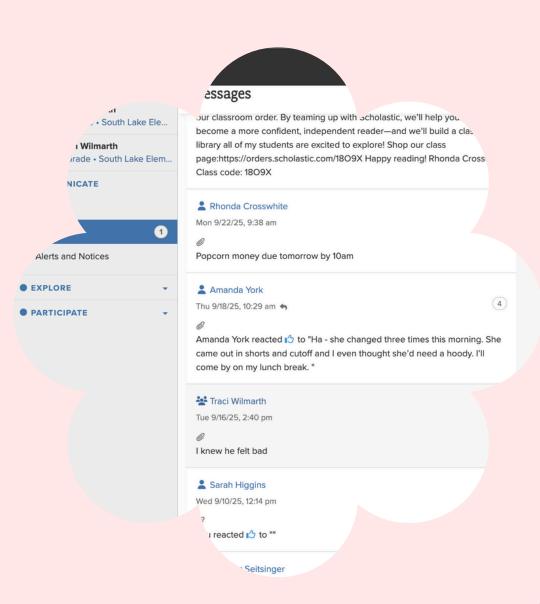
Aligned with lessons & goals

(Hattie, 2009; Niederhauser & Howard, 2018)

When integrating technology into elementary education, it's crucial to ensure it is effective. **Short bursts** of technology use help maintain student engagement and focus. Additionally, **interactive** tools foster active participation, making learning more enjoyable and effective. Lastly, ensuring that technology is **curriculum-connected** allows for seamless integration into lessons, enhancing the overall educational experience and supporting student learning goals.

Staff Engaging & Enhancing with Technology





Family


Engaging & Enhancing with Technology

Closing: The Big Picture

Students

Implementing **effective guidelines** ensures students engage safely and productively with technology in their learning environment.

Teachers

Continuous **professional development**empowers educators to integrate EdTech
effectively, enhancing their teaching
strategies and student outcomes.

Families

Strengthening **communication channels**between school and home fosters
collaboration, ensuring families are
engaged in their child's educational
journey.

Research

Technology in Elementary Education

Questions?

& Answers

- American Academy of Pediatrics. (2016). Media and Young Minds. Pediatrics, 138(5), e20162591.
 https://doi.org/10.1542/peds.2016-2591
- Bryk, A. S., & Schneider, B. (2002). Trust in Schools: A Core Resource for Improvement. Russell Sage Foundation.
- Consortium for School Networking (CoSN). (2025). Blaschke Report Screens in Balance. Washington, DC: CoSN.
- Piloting Systematic Implementation of Educational Technology in Swedish K-12 Schools: Two-Years-In ReportMasiello, M. et al. (2023); Niederhauser, D. S., & Howard, S. K. (2018).
- Darling-Hammond, L., Hyler, M. E., & Gardner, M. (2017). Effective Teacher Professional Development. Palo Alto, CA: Learning Policy Institute.
- Epstein, J. L. (2011). School, Family, and Community Partnerships: Preparing Educators and Improving Schools (2nd ed.). Routledge.
- Hattie, J. (2009). Visible Learning: A Synthesis of Over 800 Meta-Analyses Relating to Achievement. Routledge.
- Hattie, J. (2017). Visible Learning for Teachers: Maximizing Impact on Learning (Updated ed.). Routledge.
- Hughes, J., Thomas, R., & Scharber, C. (2006). Assessing Technology Integration: The RAT Framework. In C. Crawford et al. (Eds.), Proceedings of SITE 2006––Society for Information Technology & Teacher Education International Conference (pp. 1616–1620). Association for the Advancement of Computing in Education (AACE).
- Johnson, D. W., & Johnson, R. T. (2009). An educational psychology success story: Social interdependence theory and cooperative learning. Educational Researcher, 38(5), 365–379. https://doi.org/10.3102/0013189X09339057
- Kolb, L. (2017). Learning First, Technology Second: The Educator's Guide to Designing Authentic Lessons. International Society for Technology in Education (ISTE).
- Mayer, R. E. (2009). Multimedia Learning (2nd ed.). Cambridge University Press.
- OECD. (2015). Students, Computers and Learning: Making the Connection. OECD Publishing. https://doi.org/10.1787/9789264239555-en
- OECD. (2019). PISA 2018 Results: Are Students Ready to Thrive in an Interconnected World? OECD Publishing. https://doi.org/10.1787/b5fd1b8f-en
- Pane, J. F., Steiner, E. D., Baird, M. D., & Hamilton, L. S. (2015). Continued Progress: Promising Evidence on Personalized Learning. RAND Corporation. https://doi.org/10.7249/RR1365
- Puentedura, R. R. (2006). Transformation, Technology, and Education. Retrieved from http://hippasus.com/resources/tte/
- Twenge, J. M., & Campbell, W. K. (2018). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive Medicine Reports, 12, 271–283. https://doi.org/10.1016/j.pmedr.2018.10.003
- Waterford.org. (2020–2023). Program Efficacy Research Reports. Salt Lake City, UT: Waterford.org.
- World Health Organization. (2019). Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children Under 5 Years of Age. Geneva: WHO.